JAVA

PROGRAMMING
FOR

KT DS

AGES 12 - 18

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
GGGGGGGGGGGGGGGGGGG

JAVA

PROGRAMMING
FOR
KIDS
AGES 12 - 18

Copyright © 2021 S Basu
All rights reserved.

Disclaimer :

The information and materials presented here are for educational purposes
only. Every effort has been made to make this book as complete and as
accurate as possible but no warranty or fitness is implied. The information
provided is on an "as is" basis. The ideas and opinions expressed are of
the author's own imagination and the author is not affiliated to any
organization, school or educational discipline and will not be held
accountable or liable for any inadvertent misrepresentation.

Contents

Chapter 1 : Introduction
What is Java?
What is object oriented programming or OOP?
What is JDK?
What is JRE?
What is JVM?
JVM Architecture
Chapter 2 : Java JDK and Eclipse IDE Installation
2.1: JDK download
2.2: Download and install Eclipse IDE
Chapter 3 : Class, Object, Variables and Data types
3.1: What is a Java Class & Object?
3.2: What is Java Variable?
3.3: Java Data Types

3.4: What are access modifiers?

3.5: What is Java package?

3.6: Examples
Example 1
Example 2
Chapter 4: Constructors & Methods

4.1: Constructor

Example
4.2: Method
Example
4.3: What is public static void main (String[| args)?

4.4: Mathematical Operators in Java

Chapter 5: Conditional Statements & Loops
5.1: Conditional Statements

Example

5.2: Loops
5.2.1: for loop
Example
5.2.2: while loop
Example

5.3: Break statement

Example
Chapter 6: Array
Example 1
Example 2
Chapter 7: Object Oriented Programming Concepts

7.1: Encapsulation

Example
7.2: Inheritance
Example
7.3: Polymorphism
7.3.1: Dynamic Polymorphism
Example

7.3.2: Static Polymorphism

Example
TEST

Answers

Chapter 1 : Introduction

Java is the most important programming language. If you have the full
grasp of Java basics, then you can easily learn any object oriented
programming language in this world.

What is Java?

Important points to note are:
e Javais an object oriented programming (OOP) language .

e Java is platform independent meaning that it can run on any
machine containing JVM .

e In order to code and execute a Java code, JDK is needed.

What is object oriented programming or OOP?

e Object oriented programming or OOP is all about working with
classes , objects , methods and variables (explained in Chapter
3).

e The most important concepts of OOP are: Encapsulation ,
Inheritance and Polymorphism (explained in Chapter 7).

What is JDK?

e JDK stands for Java Development Kit which is needed to code
and execute Java .

e JDK includes both JVM and JRE.

What is JRE?

e JRE stands for Java Runtime Environment .

e JRE contains classes , libraries and software that a Java
program needs in order to run successfully.

e JRE also contains JVM .

What is JVM?

e JVM stands for Java virtual machine .

e JVM is responsible for converting the byte code present in .class
file into machine depended code which is understood by that
specific processor or operating system or machine.

JVM Architecture

Java files are saved with a .java extension. When we compile the .java
file, .class file is generated and this .class file contains byte code. JVM
handles the .class file and generates the desired output of the Java program.

hello world.java | i Jicl/lo world.class
compile

JVM

output

What does compilation mean in Java?

Java compilation is the process of converting a .java file (which contains
readable text Java code) into a .class file (which contains byte code).

What is byte code?

Byte codes are sequence of Os and 1s.

00001100
1000011
110100

Let’s look into JVM Architecture .
JVM architecture is divided into three main sections:
1. Class Loader

2. JVM Memory
3. Execution Engine

CLASS
LOADER

!

JVM MEMORY

Method Heap Stack : Native Method
Area Area Area PC Register B giack

EXECUTION ENGINE

JIT Compiler

Class Loader
It is responsible for loading the .class file to the JVM memory .

JVM Memory,
It 1s further divided into:

e Method area — It stores all the methods information. (methods
explained in chapter 4).

e Heap area — It stores all the objects and its corresponding
instance variables (objects and variables explained in chapter 3

).

e Stack Area — It stores all the local variables and the results of
the methods (local variables explained in chapter 3).

e PC Register — PC register store the address of the currently
executing Java virtual machine instruction.

e Native Method Stacks - Native method stacks contains native
codes which are written in another language instead of Java .

Execution Engine
It is further divided into:
e Interpreter — It converts the byte code to machine dependent

code which is understood by the machine and desired output is
generated.

e JIT Compiler — JIT stands for Just in Time compiler and its
main task is to increases the performance and efficiency of
Interpreter .

Now let’s summarize the Java program execution process

Java File { where Java code is written }

‘ compile

Class File { it contains byte code }

JVM ’

Class Loader

'

JVM Memory

l

Execution
Engine

!

Output { result of the Java program }

Before we start coding, we need to download and install JDK and an IDE .

What is Java IDE?

IDE stands for Integrated Development Environment . It is a software
application needed to write programs in Java.

There are multiple IDE present but we will be using Eclipse IDE to write
our Java code.

Chapter 2 : Java JDK and Eclipse
IDE Installation

2.1: JDK download

e Open Google chrome browser (or any browser you like) and search
for java jdk download and select the oracle website highlighted in
the screen shot below.

;Ie java jdk download

Q Al [Books [Videos [News) Shopping i More

About 15,500,000 results (0.55 seconds)

www.oracle.com » java » technologies » javase-downlo.

Java SE - Downloads | Oracle Technology Network | Oracle

Oracle JDK - Oracle Customers and 1SVs targeting Oracle LTS releases: Oracle JDK is
supported Java SE version for customers and for developing, ...
You've visited this page 3 times. Last visit: 2/3/21

Java SE Development Kit 8 Oracle JDK
Java SE Development Kit & - JDK Java SE Development Kit 11
8 - Checksum - Events - ... Downloads - Important Oracle ..

Java SE Development Kit 15 Java SE Runtime Envir

e Download the latest JDK version.

Java SE 15

Java SE 15.0.2 is the latest release for the Java SE Platform

* Documentation Oracle JDK
* Installation Instructions \I,I JDK Download I
Release Notes

. J, Documentation Download
Oracle License LI

* Binary License

* Documentation License

Java SE Licensing Information User Manual

* |ncludes Third Party Licenses

o Martifiad Quctam Canficiiratinne

e Select your operating system. (since I am using windows, so
downloading windows-x64 installer highlighted in the screen shot

below)
e o e £ e ST ot e
Windows x64 Installer 15971 MB 1, jdk-15.0.2_windows-x64_bin.exe
Windows x64 Compressed Archive 179.28 MB ‘:i, jdk-15.0.2_windows-x64_bin.zip

e Check on review box, click download and install.

4
X
You must accept the Oracle Technology Network License Agreement for Oracle Java SE to download this software.

54
E | reviewed and accept the Oracle Technology Network License Agreement for Oracle Java SE

L

Download jdk-15.0.2_windows-x64_binexe ¥

L

1AEQ71 AR Jr idl AR N2 wiindAuie

ﬂ Java(TM) 5E Development Kit 15.0.2 (64-bit) - Setup oo

Welcome to the Installation Wizard for Java SE Development Kit 15.0.2

This wizard will guide you through the installation process for the Java SE Development
Kit 15.0.2.

[Next> || Cancel |

ﬁ Java(TM) 5E Development Kit 15.0.2 (84-bit) - Destination Folder b4

Java(TM) SE Development Kit 15.0. 2 (64-hit), induding a private JRE and src. zip.
This will require 420MB on your hard drive. Click the "Change” button to change
the installation folder.

Install Java(TM) S5E Development Kit 15.0. 2 (64-bit) to:

C:\Program Files\Java'jdk-15.0.24 | Change...

Back || Mext I | Cancel

ﬂ Java(TM] 5E Development Kit 15.0.2 (84-bit) - Complete o

Java(TM) SE Development Kit 15,0, 2 (64-bit) Successfully Installed

Click Mext Steps to access tutorials, API documentation, developer guides, release notes
and mare to help you get started with the JDK.

Mext Steps

Close

e C(lick close.

e Now check whether the Java PATH is automatically added to your
Environment Variables or not.

What is Java PATH?

Java PATH is an environment variable which helps us to locate the JDK
bin directory or folder which contains all the important files needed to
execute a Java program.

Let’s access the Environment Variables.

> Open control panel -> click on System and Security .

>

>

» Control Panel »

Adjust your computer's settings

%

Click on System

Backup and Restore

System and Security
Save backup copies ¢ System and Security
View and change system and securit

status, back up and restore file and
Network and Int system settirjgs, update your
computer, view RAM and processor
View network status { speed, check firewall, and more.

5

£

Hardware and Sound

Wimass Aeasieme e A i

b » Control Panel » System and Security »

ome

urity
ernet

cund

Security and Maintenance
Review your computer's status and resolve issues
Troubleshoot commen computer problems

Windows Defender Firewall
Check firewall status | Allow an app through W

— of RAM and processor speed G
See the n System
Yiew information about your

POWET | computer, and change settings for

Change | hardware, performance, and remote
connections.

File History

Save backup copies of your files with File History

Click on Advanced system settings.

Fat
|]

-l

«— v 4 B3 Control Panel » System and Security » System

Control Panel Home : s 5
View basic information about

& Device Manager Windows edition

G Remote seftings Windows 10 Home Single Languat

& System protection £ 2020 Microsoft Corporation, All

Bl Sdvanced system settings

System
Processorn Intel(f
Installed memory (RAM): 400 ¢
System type: B4-bit
Pen and Touch: Mo Pe

> Click on Environment Variables.

I System Properties >

Computer Name Hardware Advanced System Protection Femote

You must be logged on as an Administrator to make most of these changes.

i Performance
Visual effects, processor scheduling, memary usage, and virtual memary

Lzer Profiles
3 Desktop settings related to your sign-in
A
Settings...
¥
n
y Startup and Recoveny
System startup, system failure, and debugging infarmation
n
Settings...

Environment Varables...

QK Cancel Applhy

> Under System variables , select Path -> click Edit

i we eep e e

Mew... Edit... Delete

System variables

Variable Value)
Comb&pec CHWINDOWS system 32 cmd.exe

DriverDiata ChAWindows' Systern 324 Driversh DriverData

NUMBER_OF_PROCESSORS 4

OnlineServices Online Services

05 Windows_NT

Mew... Edit... Delete

> Javapath shows highlighted in the screen shot below.

¢ Edit environment variable

ChProgram Files\Common Files\OracletJava'javapath
oaysStEMROoOL o\ sy stEma.s

eSysternRooth

%eSysternRoot %\ System 32 Whem

2SYSTEMROOTE System 32V WindowsPowerShellhwl .04
c\Prograrn Files (x260AT] Technologiesh\ ATLACE Core-Static
HSYSTEMROCT S\ Systern 324 OpenSSHY,

I N I 1)

> Click ok and exit.

We have successfully installed JDK in our machine. Now let’s download
and install Eclipse IDE.

2.2: Download and install Eclipse IDE

e Go to website https://www.eclipse.org/downloads/packages/ and
download the latest version of Eclipse IDE .

(since I am using windows operating system, so downloaded Eclipse
IDE for Windows)

Eclipse IDE 2020-12 R Packages

Eclipse IDE for Java Developers
Windows xB6_64

F .= |
l\"% 321MB 776,300 DOWNLOADS macOS x86_64

= The essential tools for any Java developer, including a Java IDE, a Git client, XML Linux x86_64 | AArch64
Editor, Maven and Gradle integration

ke

Eclipse IDE for Enterprise Java Developers

{ Downloads / Eclipse downloads - Select a mirror

downloads are provided under the terms and conditions of the Eclipse Foundation Software User Agreement unless ot!

zcified.
& Download

Download from: Canada - Rafal Rzeczkowski (hitps)
File: eclipse-java-202 R-win 4.zip| SHA-512

>> Select Another Mirror

OR Get It Faster from our Members

e After finish downloading, open the download folder in your
machine.

https://www.eclipse.org/downloads/packages/

lr » This PC » Downloads »

A Mame

55

~ Today (3)
eclipse-java-2020-12-R-win32-x 86 &4

The downloaded folder is a ZIP folder and we need to extract it in order to
access Eclipse application.
So right click on ZIP folder and click extract all.

» This PC » Downloads

A Mame
~ Today (3)
¢ eclipse-java-2020-12-R-win32-x86_64
Open
(&g jdk-15.0.2_windows-x64_bin Open in new window

~ Last week (&)) Share with Skype
Extract All...
Pin to Start

1 |2 Edit with Motepad++
p

™ - -

-~

Browse for your extract location and click on Extract .

: Extract Compressed (Zipped) Folders

Select a Destination and Extract Files

Files will be extracted to this folder:
| I::"Itec“ps.d

Show extracted files when complete

Il Extract |I Cancel

Now open the eclipse folder and look for the eclipse application
highlighted in the screen shot below.

» This PC » Windows (C) » eclipse » eclipse »

Fat

G Mame

configuration
dropins
features
) pl
B plugins
readme
i:| «eclipseproduct
|j artifacts
= eclipse
4| eclipse
“iles [z] eclipsec

e SR

Click and open the eclipse application.

& eclipse IDE

2020-12

Select a workspace and click on launch

= Eclipse IDE Launcher

Select a directory as workspace

Eclipse IDE uses the workspace directory to store its preferences and development artifacts,

Workspace: I;j| ChlUsersy, ™ ° eclipse-workspace W Browse...

[] Use this as the default and do not ask again

» Recent Workspaces

We have now successfully installed Eclipse IDE .

Let’s begin coding..

Chapter 3 : Class, Object, Variables
and Data types

3.1: What is a Java Class & Object?

Class

Important points to note are:
o Java class is a blueprint for creating an object .
e Java class contains methods and variables .
e The syntax for creating a Java class is:

access_modifier class class name {

e An object instance of a class .

e An object contains the copy of methods and variables present inside
its class .

e The syntax for creating a Java object is:

type object name = new class name ()

The type denotes the type of object declared.

The new keyword is used to create an object .

The new keyword is followed by call to a constructor (constructor
explained in chapter 4).

For example: Animal a = new Animal(), here a is an object of type Animal (
Class name) and the new keyword is followed by call to Animal default
constructor .

I know it all sounds extremely complicated, let’s try to simplify a little bit
below.

Let us consider a class room containing three students, John , Ram and Katy .
These three students have few things in common and they are as follows:

All three are students of a class room.
They each have a name.

They each have a student ID.

They each have an age.

They each have a gender.

6. They each have their home address.

bW =

These six things listed above are called attributes of a student. In Java world,
we can depict these attributes in the form of a variable .

A student performs multiple functions like studying, eating, playing etc. In
Java world, these functions can be depicted by methods .

We have successfully stated the attributes and functions of a Student. Now
the big question is where we can store these information?. Well we can store
this information in a class .

The students John , Ram and Katy have their own individual characteristics
and they all fall under the student category. In Java world, these three students
are referred as objects of class student and the objects will contain a copy of
all variables and methods declared within its class .

CLASS Attributes:

Name

STOUDENT &

Student 1D
‘ Address

OBJECT

Let’s summarize the concept:

e Student is a class .

e John , Ram and Katy are objects which belong to class Student .

e Name, Gender, Age, Student ID, Address are variables of class
Student .

We will look into another example of Java class and object .

There are multiple animals which belong to the animal kingdom. There are
dogs , tigers , monkeys , lion etc. All animals have few things in common like
they all fall under the animal category, they all have a name, weight, age and
they also perform some common functions like eating, playing and many
more.

In Java world, we can write all the above information in a class Animal and
the objects of class Animal will be dog , tiger , monkey .

In other words we can say an object is a small miniscule entity of the vast
class which has its own properties and characteristic.

3.2: What is Java Variable?

Important points to note are:
e Java variables act as a container to hold data.

e The variables are declared with a Data type .

Example: int age

Here age is a variable name whose data type is int or integer meaning that
the variable age can hold only numeric whole numbers.

Java variables are of three types:

1. Local variable — These variables are declared within methods
(methods discussed in chapter 4) and the variables get destroyed
soon after exiting the method .

2. Instance variable — These variables are declared within the class .

3. Static variables — The values of these variables remains
constant or static and it also does not require any object to access
it.

3.3: Java Data Types

Java data types are divided into two categories:

1. Primitive Data Type — It contains such as boolean, char, int, short,
byte, long, float, and double.

2. Non-Primitive Data Type : It contains String, Array, etc.

Data type Description
it This data type stores integer values
like 1,2,3,450..80
Aoat This data type stores fractional
numbers like 123.50
char This data type stores a single
character value like ‘4’ or ‘B’ or ‘C’
This data type returns TRUE or
boolean FALSE of any given expression or
condition.
String String is a Java class which is used to
stores group of characters. Example:

“John > or “Hello students > etc

In the above Student class example of section 3.1:
e Variable Name will be of data types String.

e Variable Gender is usually denoted by a single character M (for
male) or F (for female) so its data types will be char.

e Variable Age will be of data type int.

e Variable Student ID may contain numbers and character values
together, so let’s assign a data type of String to it.

e Variable Address will be of data types String.

3.4: What are access modifiers?

Access modifiers denote the accessibility of a class or a method . It is broadly
divided into 4 types:

1: Public access modifiers — This means that the class or method is accessible
from everywhere.

2: Private access modifiers — This means that the class or method is
accessible only from within.

3: Default access modifiers — This means that the class or method is
accessible only from within its package .

4: Protected access modifiers — This means that the class or method is
accessible from within its package or any package other than its own
package through inheritance only (inheritance discussed in chapter 7).

3.5: What is Java package?

e A Java package contain group of Java classes .
e Java packages are mainly done to avoid name conflicts.

If a package contains two Java class files of the same name, it will lead to
name conflict and error in the Java project may occur in future. In order to
prevent that from happening, separate packages should be created for
storing the class file which has the same name.

Package
Hello java x
Name conflict
Hello.java
Package 1 Package 2

Hello.java
Hello.java

Now let’s code..

3.6: Examples

Example 1

Launch Eclipse IDE and create a new Java project .

e C(Click on File -> New -> Java Project .

= cclipse-workspace - hellofsrc/hello1/Hello_world.java - Eclipse IDE

File IEu:Iit Source Refactor MNavigate Search Project Run Window Help

New Alt+Shift+N ‘E s
Open File... 7 Project.. Create a Java |
[} Open Projects from File System... H#Y Package [
Recent Files *
& Class !

e Give the Project name (/ named hello_world) and click on Finish .

= Mew Java Project

Create a Java Project

Create a Java project in the workspace or in an external location.

Project name: | hello_world

Use default location
Ch\Users\Potlu'\eclipse-workspaceihello_world
IRE
(®) Use an execution environment JRE:
() Use a project specific JRE:

() Use default JRE 'jre' and workspace compiler preferences

Project layout

() Use project folder as root for sources and class files

(®) Create separate folders for sources and class files

Working sets

(] Add project to working sets

JavaSE-15

jre

< Back

Browse...

Configure JREs...

Configure default...

Mew...
Select...

¢ On Create module-info.java window, for now I will be clicking on

Don t Create .

= New module-info.java

Create module-info.java

Create a new module-info.java file. @

Module name: | hello_world

] Generate comments (configure templates and default value here

|

Our hello_world Java project is created.

= eclipse-workspace - Eclipse IDE

File Edit 5ource Refactor

Mavigate Search Project
=

= F¥-0-QL-Q-H G-
[# Package Explorer 3 Es § = 0O
~l L hello world: |

B\ JRE Systern Library [JavaSE-15]

2 src

Right click on the src folder -> Click New -> Package (we are
creating a new package) .

What is the default src folder of Eclipse IDE?

Default src folder is the source folder which contains the source code or the
main code of our project.

= ceclipse-workspace - Eclipse IDE
File Edit Source Refactor Mavigate Search Project Run Window Help
'ﬁv:_:. = ﬁvﬁv&v%v:@@v'gq{v En . - -

[# Package Explorer 331 =R =N
v'[;_'—‘,,"- hello_world

» B JRE System Library [JavaSE-15]

MNew H @ lava Project
Open in Mew Window] Project..
Open Type Hierarchy F4 |5 Package
Show In Alt+Shift+W > (& Class
B Copy CtrlaC € Interface
it s ot i Fnum
s MNew Java Package O

Java Package -
Create a new Java package.

Creates folders corresponding to packages.

Source folder: | helle_world/src | Browse...

Mame: | hello_world| |

[] Create package-info.java

Generate comments (configure templates and default value here)

@ conce

Click Finish

e Right click on the hello_world package -> click New -> Click Class
(we are creating a new Java class)

= eclipse-workspace - helle_world/src/hello_world/Hello java - Eclipse IDE

File Edit Source Refactor Mavigate Search Project Run Window Help

ﬁ - E ?Su\ ﬁ; - a - Q - % - EE’H @ - I:S ..')' - ’
{2 Package Explorer 31 E %S 8 = 8 [1 mod
\-f'[,'g‘J hello_waorld 1 ps

B\ JRE System Library [JavaSE-15]

w [src
H hello_wrnrld

d pa |

£y

Mew » 2% Java Project
[J] module = J
Go Into ™ Project...
Open in New Window BY Package
Open Type Hierarchy F4 |& Class
Show In Alt+Shift+ W > | ¥ Interface
(
Show in Local Terminal > | (& Enum I:
[E Copy Ctrl+(C & Record
E= Copy Qualified Name @ Annotation

Give the Class name (I gave Hello) starting with a capital letter -> check on
public static void main(String[] args) box -> click Finish .

& MNew Java Class O >

Java Class
Create a new lava class, @

Source folder | hello_world/src | Browse...

Package: | hello_world | Browse...

[Enclosing type: Browse...

Mame: | Hello |

Modifiers: (®) public () package private protected

[]abstract []final ctatic

Superclass: |java.|ang.0bject | Browse...

Interfaces: W
Remove

Which method stubs would you like to create?
public static void main(5tring[] args) I
| Constructors from superclass
[Inherited abstract methods

Do you want to add comments? (Configure templates and default value here

|:| Generate comments

@

e In Hello.java , write one line of code highlighted in the screen shot
below and execute the program by clicking on the run button.

detactor Mawvigate bSearch FProject Hun Window Help
OlQ- G- HEG- By~ PARE T B -f- 0o~
E % 8 = 8 [Hellojava 32

1 package hello_world;
un button 2
o 3 public class Hello {

4

Se public static void main(String[] args)*{
6 System.out.print("hello kids"));

b

ibrary [JavaSBl3

i:_ Problems @ Javadoc |_(,=.111 Declaration EConsole o

i lication] Checlipseheclipseplugins\org.eclipse,justj.openjdi.hotspot,jrefull.win32 x 36_64
hello kids

Code explanation:

e System.out.print is used to display or print output.

System.put.println is same as System.out.print but the println displays
output in separate lines.

e At line 5, you will notice a very important line of code that is public
static void main(String|[] args). It is the Java main method and it
acts as an entry point to our Java Program. Any Java program will
only start execution process after it encounters this very important line
of code. (We will discuss more about this line of code in Chapter 4).

Example 2

Let’s create another Java class .

e Right click on hello_world package -> New -> Class (I named my
class file students)

= Mew Java Class O 4
Java Class _
Create a new Java class.
Source folder | hello_world/src | Browse...
Package: | hello_world | Browse...
[Enclosing type: Browse...
Mame: Students |

Madifiers: (®) public () package private protected

[]abstract []final static
Superclass: | java.ang. Object | Browse..,
Interfaces: Add..
Remove

Which method stubs would you like to create?
public static void main(String[] args)

[] Constructors from superclass
[Inherited abstract methods
Do you want to add comments? (Configure termplates and default value here

[] Generate cormments

© T

e In students.java , write the following lines of code.

1 package hello_world,;
2
3 public class Students {

4

5 String name;

&

7

8¢ public static void main(String[] args) {
9 Students studentl = new Students();
10 Students student2 = new Students();
i | Students student3 = new Students();
12

13 studentl.name = "John";

14 student2.name = "Ram";

15 student3.name = "Katy";

16

17 System.out.println(studentl.name);
18 System.out.println(student2.name);
19 System.out.println(student3.name);
20 }

21 |}

Code explanation:

e At line 5, we declared an instance variable (explained in section 3.2)
name whose data type (explained in section 3.3) is String .

e At line 8, the very important line of code public static void
main(String[] args) is written.

Please Note: Always remember Java objects must be declared only after
typing this very important line of code.

e Atline 9, 10, 11 different objects of class Students are created.

e With the help of dot (.) operator , we access the variable name from
class Students.

Please Note: To access any variable or method of a class from an object ,
dot operator is used.

e Atline 13, 14, 15, we pass values or data into the name variable of
each object .

e Atline 17, 18, 19, we print out the values.

Now let’s run the above piece of code

(*! Problems @ lavadoc |£=_{ Declaration & Conscle 53
<terminated> Students [Java Application] Checlipse\eclipseiplut

John
Ram
Katy

Chapter 4: Constructors & Methods

In previous chapter we learnt about the basic idea of a method . In this chapter
we will create a Java program containing constructors and methods .

4.1: Constructor

We learnt about Java object syntax in chapter 3, section 3.1 and we learnt that
the new keyword is followed by call to a constructor so what is Java
constructor? .

e Java constructor is a special Java method that is used to initialize
Java objects .

e Java constructor’ s name must match with the Java class name.

e Java constructor does not have a return type (return type discussed
in section 4.2).

e Java constructor is always called during object creation. If a class
does not contain any constructor , then Java compiler automatically
created a default constructor and executes the program.

Java constructor is of two types:

1. Default constructor
2. Parameterized constructor

Default constructor

Default constructor does not contain any parameter .

Parameterized constructor

Parameterized constructor contains parameters .

What is Parameter?

Parameter is a variable which is passed to a method or constructor . A
method or constructor can have one parameter or multiple parameters .

Example

> Launch Eclipse IDE -> create a new class (I named my class Multiply)

1 package hello_world,;

2

3 public class Multiply {

4 int valuel, value2;

5

6¢ Multiply() {

7 // default constructor

8 }

S

10- Multiply(int x, int y) {

11 // parameterized constructor

12 valuel = x;

13 value2 = vy;

14 }
15
16¢ public int multiply() {
17 int z = valuel * value2;
18 return z;
19 }
20
21e public static void main(String[] args) {
22 Multiply m = new Multiply(1@, 18);
23 System.out.println(m.multiply());
24
25 }
26

27 }

Code explanation:

At line 4, instance variable (instance variable discussed in chapter 3,
section 3.2) valuel and value 2 are declared.

At line 6, we created our default constructor .

At line 10, we created our parameterized constructor and it takes
two parameters x and y .

At line 12, we passed x to valuel meaning that when we will assign a
value to variable x , that value will in turn get assigned to variable
valuel .

At line 13, we passed y to value2 meaning that when we will assign a
value to variable y , that value will in turn get assigned to variable
value? .

At line 16, method multiply is declared and this method will return
the multiplication result.

At line 21, Java main method is declared (we have discussed about
this very important line of code in chapter 3 and we will discuss more
about this method as we proceed further).

At line 22, object m is created and values are passed to Multiply
constructor (parameterized constructor created in line 10. Value 10 is
assigned to instance variable valuel and other value 10 is assigned to
value2)

At line 23, method multiply is called.

Now let’s run the above piece of code

(%1 Problems @ Javadoc [, Declaration & Conscle i3
<terminated=> Multiply [lava Application] Checlipseheclipselpluc

lee

4.2: Method

e A Java method is a block of code performing some task.

For example: Let us consider a Math class , Math contains numbers and
with those numbers we can perform multiple functions like addition,
subtraction, multiplication, division etc. In Java , we can write these
functions in a method .

e The signature of a Java method is:

access_modifier return_type method name {

(access_modifier discussed in section 3.4 of chapter 3)

What is return type in Java?

Return type is the data type of the value returned by the method .

Example: Let us consider the method signature written below:

public int addition () {
3

In the above method signature , the method ’s name is addition and its
return type is int . This means that the addition method will return a value
of data type int .

In order to return the value of a method return keyword is used.

Let us consider another method signature written below:
public void show () {
}

In the above method signat ure, the method ’s name is show and its return
type is void . This means that the show method will return no value.

Example

e Launch Eclipse IDE -> create a new Class within the hello_world
package (created in chapter 3)

(I named my Class Math)

& New Java Class O
Java Class
Create a new Java class. @
Source folder | hello_world/src | Browse...
Package: | hello_world | Browse...
[] Enclosing type: Browse...
|
Meodifiers: (@) public () package private protected
[Jabstract []final static
Superclass: | java.lang.Object | Browse...
Interfaces: Add...
Remove
Which method st yiou like to create?
public static void main(String[] args)
[] Constructors from superclass
[]Inherited abstract methods
Do you want to add comments? (Configure ternplates and default value here
|:| Generate comments
@

In Math.java write the following lines of code.

1 package hello_world,;
2
§ 3 public class Math {
4
| 5e public int addition(int x, int y) {
6 ink =:
| 7 Z =+ Y
8 return z;

o 3

11e public int subtraction(int x, int y) {
12 int =

§13 £ 5 ke g

14 return z;

15 }

él?- public static void main(String[] args) {

élB Math m = new Math();

20 System.out.println(m.addition(1©, 10));
21 System.out.println(m.subtraction(18, 5));

23 }

Code explanation:

e At Line 3, Math class 1s declared and this class contains two methods
addition and subtraction .

e Atline 5, addition method is declared.

Let’s look into its signature.

refurn type paramerers

] :

public int addition(int x, int y)

i

access modifiers method name

o At line 6, we declared a local variable z (local variable discussed
in chapter 3, section 3.2).

o At line 7, we perform the arithmetic operation.

o At line 8, we return the value of z with the help of return keyword

e Line 11 — 14, contains method subtraction and it follows the same
process of method addition .

e Line 17 contains the main line of code which will start the execution
process and will act as an entry point to Math.java .

e Atline 19, object m of class Math is created. This object will contain
a copy of all methods and variables of class Math . In order to access
those information dot (.) operator is used.

e At line 20 and 21, the methods of class Math are accessed and
arguments are passed into those methods (In addition method , value
10 is assigned to variable x and other value 10 is assigned to variable
y . In subtraction method, the value 10 is assigned to variable x and
other value 5 is assigned to variable y) . Then the results of those
methods are printed by System.out.printin .

What is Argument?

Arguments are data values which are passed to the method parameters .

Now let’s run the above piece of code
<

[*] Problems @ Javadoc |'_{,_=,:L Declaration EJ Console &3
<terminated> Math [lava Application] Checlipse\eclipseiplugins',

20
5

4.3: What is public static void main (String| | args)?

We have learnt in chapter 3 as well as in this chapter that public static void
main (String| | args) is the most important line of code in any Java
program. This line of code acts as an entry point or starting point of any Java
program.

_ Array of data type
access modifier ~ TeMINOPe guing

l ’ ‘ ‘—Ha:rne of String[]

public static void main (String [] args)
f |
‘i '
static keyword method Paramerer o
means that the name to the main method

method does not
require any
object to access it.

chapter 1)

Please Note: JVM accesses the Java main method . (JVM discussed in

4.4: Mathematical Operators in Java

Arithmetic Operator Description

+ Addition
- Subtraction
* Multiplication
/ Division

% Returns the Division remainder

Increments a variable by 1.
i Example x =x + 1. If value of x is 5,

then the new value of x will be 5 + 1
=6.

Decrements a variable by 1.
Example x =x — 1. If value of x 1s 4,
then the new value of x will be 4 — 1

= 3.

Chapter 5: Conditional Statements
& Loops

5.1: Conditional Statements

e Java contains multiple conditional statements and they are:
1. if

2. else
3. else if

e The syntax of if and else is:

if (condition) {

................ code ...euu...

}

else {

.............. COAC wevevennnnnnnnnnns
}

e The syntax of if , else if and else is:

if (condition) {

........ COAE wuueerenernnnnnnnns

}

else if (condition) {

........... COAC weveueereensnennnnne

}

else {

.................... COAC wevveeennnnnnns
}

These conditional statements check where a certain condition returns Boolean
value TRUE or FALSE . If the condition returns TRUE , a block of code
executes, else another block of code executes.

Execution flow of if and else

IRUE v ocute if block of

if (condition) code

FALSE

execiite else Dlock of
code

TRUE execute if block
m— - of code

FALSE

TRUE

else if (condition) v execute else if block

of code

FALSE

execiute else block of
code

Logical operations available in Java

Operator Description
Checks whether the value of x 1s
X>y
greater than the value of y
<< Checks whether the value of x 1s less
Y than the value of y
L Checks whether value of x is equal to
X==Yy
the value of y
= Checks whether the value of x is
Y NOT equal to the value of y
Checks whether the value of x 1s
X>=y greater than and equal to the value of
y
< < Checks whether the value of x 1s less
Y than and equal to the value of y

Let’s code..
Example

e Launch Eclipse IDE and create a new Java Class (I named my class
ConditionalStatements) and write the following lines of code shown
in the screen shot below.

1 package hello_world,;

2

3 public class ConditionalStatements {

4

5e public static void main(String[] args) {

6

7 int x = b;

8 int y = 16;

9

10 IF ix > E¥ 4

11 System.out.println("x is greater");
12 }

i else if (x == @) {

14 System.out.println("x is equal to y");
15 }

16 else {

17 System.out.println("x is less than y");
18 }
19
20 }
21
22 |3

Code explanation:

e Atline 3, Class ConditionalStatements 1s declared.

e Atline 5, public static void main (String| | args) is written (this line
of code was discussed in chapter 3 and chapter 4).

e At lines 7 and 8, instance variables (discussed in section 3.2 of
chapter 3) x and y are declared and values 5 and 10 are assigned to it.

e Atline 10, if condition 1s declared. It checks whether the value of x is
greater than the value of y . If the condition is satisfied or return
Boolean value TRUE , line 11 executes .

e Atline 13, else if condition is declared. It checks whether the value of
x 1s equal to the value of y . If both values are equal, line 14 executes.

e At line 16, else condition is declared and this block of code runs if
both if and else if condition is not satisfied.

In this example, the value of x is 5 and the value of y is 10, so the value of x is
not greater than the value of y and hence the condition will return FALSE and
line 11 will not execute. The value of x is obviously not equal to the value of y,
so the condition will return FALSE and the line 14 will not execute.

Value of x was not greater than y (stated in if condition) and value of x was not
equal to the value of y (stated in else if condition), so this means that x is less
than y and else block of code executes.

Now let’s run the above piece of code.

(% Problems @ Javadoc Ef_.f Declaration E) Console 32
<terminated> ConditionalStatements [Java Application] Checlipseheclipselpl

X 1s less than y

5.2: Loops

e There are two types of loop:

1. for loop
2. while loop

These loops are used to loop through a block of code to test whether a
certain condition is satisfied or not.

o for loop works best with Arrays (we will learn about Array basics in
Chapter 6).

5.2.1: for loop

The syntax is:

for (initialization , condition , increment) {
......... COAC vevvvinnnennannns

o The initialization part initialize a variable and it executes only
once in the for loop lifecycle.

o The condition part contains a logical operation.

o The increment part increments the variable and it executes
every time after the block of code executes.

Execution flow of a for loop

&=
i

initialization

——cof— condition ‘<—I
FALSE

increment

' TRUE

execute the block of
code inside for loop

Example

Launch Eclipse IDE and create a new Class (I named my class Loops

).

Write the following lines of code in Loops.java .

1 package hello_world;

2

3 public class Loops {

4

5e public static void main(String[] args) {
)

7 for (Ant 1 = 8; 1 <= 5; 1++) {
8 System.out.println(i);

S }

18

11 }

12

13 }

Code explanation:

e Atline 3, class Loops is declared.

e At line 5, the main method is written (this line of code is discussed in
chapter 3 and 4) .

e Atline 7, the for loop is stated.

o In initialization part, the variable i is declared and a value of 0 is
assigned to it.

o In condition part , the condition of i <=5 is set.

o In increment part , we increment the value of i by 1. The value of i
will increment by 1 every time the condition is satisfied or returns
TRUE and the block of code executes.

e At line 8, the value ofi is printed.

Execution process of the above piece of code:

= =0 -> the condition is checked (i is indeed less than 5, so the
condition returns TRUE) -> line 8 runs -> i is incremented 1.

Present value of i 1s 1.

= =1 -> the condition is checked (i is indeed less than 5, so the
condition returns TRUE) -> lines 8 runs -> i 1s incremented 1.

Present value of 7 is 2.

= =2 -> the condition is checked (i is indeed less than 5, so the
condition returns TRUE) -> lines 8 runs -> i is incremented 1.

Present value of'i 1s 3.

= =3 -> the condition is checked (i is indeed less than 5, so the
condition returns TRUE) -> lines 8 runs -> i is incremented 1.

Present value of 7 is 4.

= =4 -> the condition is checked (i is indeed less than 5, so the
condition returns TRUE) -=> lines 8 runs -> i 1s incremented 1.

Present value of 7 is 5.

= =15 -> the condition is checked (i is indeed equal to 5, so the
condition returns TRUE) -> lines 8 runs -> i 1s incremented 1.

Present value of i is 6.

= =6 -> the condition is checked (i is NOT less than or equal to 5,
so the condition is FALSE) -> EXIT out of the loop.

Now let’s run the above piece of code:

(% Problems @ Javadoc [&, Declaration [Console i3
<terminated> Loops [Java Application] Checlipseleclipse\pluginshor

e

v bkw NP

5.2.2: while loop

while loop keeps on executing a block of code as long as the condition is
TRUE .

The syntax is:

while (condition) {
.......... code oeveriinnnns

1 package hello_world,;

2

3 public class Loops {

4

Se public static void main(String[] args) {
&

7 int i = 9;

8

9 while (i < 5) {

10 System.out.println(i);
| G i++;

12 }

15

14 }

5

16 }

Code explanation:

= At line 7, instance variable (instance variable discussed in chapter 3,
section 3.2) i is declared and a value 0 is assigned to it.

= At line 9, while loop is declared with a condition . This loop will go
on till the value of i is less than 5.

Please note: It is very important to increment the value of i as we did on line
11 of the above piece of code. If we do not increment, the while loop will
never stop.

5.3: Break statement

Break statements are used to break out of a loop if certain condition is
satisfied.

Example

> In Eclipse IDE , create a new Class (I named my class BreakExample)

1 package hello_world;
2
3 public class BreakExample {
4
5e public static void main(String[] args) {
6
F | System.out.println("Looking for number 3");
8
= for (int i = @; i <= 5; i++) {
18
11 if (i == 3) {
12 System.out.println("Found 3, so exit the loop");
13 break;
14 }
15
16 System.out.println("The number is " + 1i);
17 }
18
19 }
20
21 3

Execution flow of the above piece of code:

35 ﬁ

i+t
‘ TRUE

FALSE '

i==3 il 7711 i€ 16

‘ TRUE

print line 12 and break out
of the for loop after
encountering the break
Statement

Chapter 6: Array

e An Array is a collection of elements all having the same data type .
e The syntax for Array declaration is:

data_type| | array name

or

data_type| | array _name = { elementl , element? }

or

data_type| | array_name = new data_type| array size |

Let us consider the Fruits category. Fruits can be divided into apple ,
orange , banana , strawberry etc.

Fruits

element 1 element 2 element 3

In Java , we can store all the fruits items or elements (shown in the screen
shot above) into a single variable using array .

For example:

String[] fruits = { “apple”, “orange”, “banana’ }

fruits 1s an array which holds or stores elements of data type String and
fruits stores elements apple , orange and banana .

How to access any value from an Array?
e An array element can only be accessed from its index value .

e The syntax for accessing an element from an array is:

array _name [index_value]

Index 0 1)
value

apple orange banana

In the above fruits example, apple is present at index value 0. orange is
present at index value 1 and banana is present at index value 2.

e In order to access apple from the fruits array , we need to write

Sfruits[0].

e In order to access orange from the fruits array , we need to write

fruits[1].

e In order to access banana from the fruits array , we need to
write fruits/2].

Please note: The index value always starts with 0.

Example 1

1. Without using for loop

> Launch Eclipse IDE -> create a new Class ([named my class
ArrayFruits)
§ 1 package hello_world;
2
2 public class ArrayFruits {
4
5e public static void main(String[] args) {
]
7 String[] fruits = { "apple", "orange", "banana" };
8
S System.out.println(fruits[@]);
10 System.out.println(fruits[1]);
1 By | System.out.println(fruits[2]);
12
13 }
14
15 }

Now let’s run the above piece of code:

(2! Problems @ Javadoc [Declaration) Console 3
«terminated> ArrayFruits [Java Application] Checlipseeclipse\pluginsic

apple
orange
banana

2. Using for loop

(for loop discussed in chapter 5)

1 package hello_world;

2

3 public class ArrayFruits {

4

5e public static void main(String[] args) {

6

7 String[] fruits = { "apple"”, "orange", "banana" };
8

S for (int 1 = ©; 1 < fruits.length; i++) {
10 System.out.println(fruits[i]);
11 }
12
13 }
14
153

Code explanation:

e Inline 9, you will notice the condition i < fruits.length ;

What is length?

length is a special variable which returns the length of an array . In this
example, the length of array fruits is 3 because it contains 3 elements
apple , orange and banana .

This condition states to continue the for loop till i is less than the
length of the array . Since the length of the array is 3, the for loop
will loop 3 times.

Execution flow of the above piece of code:

EX][T -mmm [< fruits.length
FALSE I

‘ TRUE L
print '
fruits[i]

Example 2

> Let’s create another class (I named my class Car)

1 package hello_world;
2
3 public class Car {
4
5 String[] show = new String[2];
&
7e public String[] car_info(String make, String model) {
3
9 show[@] = make;
10 show[1] = model;
11 return show;
12 }
13
14s public static void main(String[] args) {
15
16 Car ¢ = new Car();
17
18 String[] x
19
20 for (int i = ©; i < x.length; i++) {
21 System.out.println(x[i]);
22 }
23
24 }
25
26 }

c.car _info("Ford™, "F2021");

Code explanation:

e Atline 5, we declared an array show whose data type is string .
We also set its size meaning that this array will only hold 2
elements.

e Atline 7, we declared a method car_info with two parameters
make and model .

(This method will return an array of data type string).

o Atline 9, we store make at array position 0.
o At line 10, we store model at array position 1.

o Atline 11, we return the array show .

e Atline 18, we access the car_info method and pass values into it.

car_info returns an array of data type string and that result gets stored
in another array x .

e From line 20 to 21, we print out the elements from array x .

Let’s run the above piece of code:

(%! Problems @ Javadoc &), Declaration & Console 33
<terminated> Car [Java Application] Checlipse\eclipse\pluginsho
Ford

F2021

Please note: In order to return multiple values from a method , we can
use array as we did in above example.

Chapter 7: Object Oriented
Programming Concepts

The most important Object Oriented Programming or OOP concepts are:-

1. Encapsulation
2. Inheritance
3. Polymorphism

7.1: Encapsulation

Encapsulation is the mechanism in which all the Java methods and
variable are wrapped up into a single unit (Class) .

Class

variables

data

methods

e Encapsulation helps to protect the data present inside the unit and
prevents any malicious activity.

e In Encapsulation, the variables of a class is declared private
(private access modifiers explained in chapter 3, section 3.4) .

In order to access the private variable from outside the class , get and
set methods are used.

set method is used to set a value and get method is used to get the
value.

Example

> Launch Eclipse IDE -> create a new Class (I named my class Encap
).
package hello_world;

public class Encap {

private String username;
private String password;

In Encap class , [declared two variables username and password .

Since both username and password carries very important and sensitive
data (sensitive data are those data which must be hidden and protected at
any cost) , so we declared its access modifier as private meaning that no
class outside Encap class can access these variables . In order to access
these private variables , we need get and set methods .

> To generate get and set methods of variables username and
password , click on the yellow bulb like icon beside username and
password and select Create getter and setter for ‘username’ and Create
getter and setter for ‘password’ respectively.

g private String [HIAMELE;
l' pr‘iua‘te Str‘ing Fxﬁemove'usemame' keep assignments witl

& Create getter and setter for 'username'...

8 T RETarTe M Te LT 2, o)
1= Rename in workspace (Alt+Shift+R)
9 } e (Thanne mndifier tn final

= Encapsulate Field

O x

Getter name: | petUsemame

| (new getter created)

Setter name: | setllsername

| (new setter created)

Configure naming conventions...

Inzert new methods after: Az first method

[] Generate method comments

Preview =

Field access in declaring type: ®) use setter and getter () keep field reference

Cancel

private String username;
private String [EEETlelal)

ate field' refactoring to create getter and setters

= Encapsulate Field

i 3 Remove 'password’, keep assignments
« {Create getter and setter for 'password'..

T REmarE M e Lo,

2 Rename in workspace (Alt+Shift+R)

O *

Getter name: | getPassword

| (new getter created)

Setter name: | setPassword

| (new setter created)

Configure naming conventions...

Field access in declaring type: (®) use setter and getter () keep field reference

Inzert new methods after:

[] Generate method comments

Preview =

setllsername(String)

Cancel

1 ﬁackaéé héilo_world;

2
32 public class Encap {
4
5 private String username;
6 private String password;
7€ public String getUsername() {
8 return username;
S }
10= public void setUsername(String username) {
13 this.username = username;
12 }
13e public String getPassword() {
14 return password;
15 }
ie— public void setPassword(String password) m
ﬁ? this.password = password;
18 i

What is this keyword ?

this keyword refers to the current object .

In the above example, Class Encap is public meaning that any other class
can access Class Encap but its variables are private meaning no other
class can access these variables except for Class Encap . The get and set
methods are public meaning that any other class can access these methods

> Let’s create another class (I named my class Encap?2) and access the
get and set method declared in class Encap .

1 package hello_world;

2

3 public class Encap2 {

4

56 public static void main(String[] args) {
6 Encap e = new Encap();

7

8 e.setUsername("John");

9 System.out.println(e.getUsername());
10
i 5 e.setPassword("J123");
12 System.out.println(e.getPassword());
E3
14 }
15
16 }

Code explanation:

= Since Class Encap was public , Class Encap?2 can access it easily.

In line 6, an object of class Encap is created and its set and get methods
are accessed.

First we pass a value to variable username using its set method at line §
and then we get and print out the value using its get method at line 9.

Then we pass a value to variable password using its set method at linell
and then we get and print out the value using its get method at line 12.

Let’s run the above piece of code:

(2! Problems @ Javadoc |&), Declaration & Console &2
<terminated> Encapd [Java Application] Checlipse\eclipseiplugi

John
J123

7.2: Inheritance

Important points to note are:

e Inheritance i1s a mechanism in which a subclass or child class
inherits all the properties from superclass or parent class .

e The main usage of Inheritance is code reusability.

e The subclass or child class inherits properties from its parent class
using extends keyword .

class Parent {

v eee e eeenncode.

}

class Child extends Parent {
et nnCOde
}

e A subclass can contain its own properties as well as its parent
class properties.

Example: Let us consider a school district XYZ contains three schools,
elementary school , middle school and high school and all the three schools
are built on the same street and on the same location. The common attribute
between these schools are:

1. They all are schools or educational institution.

2. They all are built on the same street but have different building
names and numbers.

3. They all fall under the same school district.

GChOO| superctas
|

l i i

i

child 1 child 2 child 3

While coding, instead of writing these common information for each school
again and again, we can write them once in a single place (in a superclass
or parent class) and call them whenever any other class needs them.

Example

> Launch Eclipse IDE , create a new class (I named my class
SchoolSuperClass) and this class will act as a superclass .

> Create three more classes , one for elementary school (I named my
class ElementaryChild) , one for middle school (I named my class
MiddleChild) and one for high school (I named my class HighChild).
These three classes will act as a child class of superclass
SchoolSuperClass.java .

> In superclass SchoolSuperClass.java, write the following lines of
code:

1 package hello_world;
2
2 public class SchoolSuperClass {

4

5 String schoolld;

6 int building_num;

7

8¢ public void street_address() {

S System.out.println("The street address is XYZ");
10 }

14 13

In this class , we declared all the variables and methods which are
common to all three schools.

e Open ElementaryChild.java, and write the following lines of code

1 package hello_world,

2

2 public class ElementaryChild extends SchoolSuperClass {
4

56 public static void main(String[] args) {
&

7 ElementaryChild e = new ElementaryChild();
8

9 e.schoolId = "E123";

18 e.building _num = 222;

2 s

12 System.out.println(e.schoolld);

13 System.out.println(e.building_num);
14 e.street_address();

15 }

16

17 }

Code explanation:

= At line 3, with the help of extends keyword , all properties of
superclass SchoolSuperClass are incorporated into child class
ElementaryChild.

= Atline 7, object e of ElementaryChild class is created.

= At line 9 and line 10, the variables school Id and building num
are accessed from superclass and values are passed into fit.

= Atline 12 and 13, the values of the variables are printed.

= At line 14, the street _address() method present in superclass is
called.

Now let’s run the above piece of code:

(2 Problems @ Javadoc &), Declaration &) Console 3
<terminated> ElermentaryChild [Java Application] Checlipseecl

223
222

The street address is XYZ

e Open the second class file MiddleChild.java and write the
following lines of code:

1 package hello_world;

.

3 public class MiddleChild extends SchoolSuperClass {
4

5e public static void main(String[] args) {
6 MiddleChild m = new MiddleChild();
7
8 m.schoolId = "M&678";
9 m.building num = 225;
16
11 System.out.println(m.schoolld);
B System.out.println(m.building_num);
13 m.street_address();
14
15 }
16
17 [}

The above piece of code is very similar to ElementaryChild.java, only data
is different.

Let’s run the above piece of code:

(2 Problems @ Javadoc |G, Declaration & Console 3
<terminated> MiddleChild [Java Application] Checlipse\eclipse

Me78
225
The street address is XYZ

We followed the same process above for HighChild.java.

7.3: Polymorphism

Polymorphism is a mechanism in which a method can be executed in many
forms based on the object that is acting upon it.

Polymorphism is of 2 types:

1. Dynamic Polymorphism or Run Time polymorphism
2. Static Polymorphism or Compile time polymorphism

7.3.1: Dynamic Polymorphism

The most important example of this type of Polymorphism is Method
overriding .

e When superclass and subclass have method with same name and
signature , the method of the subclass tends to overrides the
method of the superclass . This mechanism is called Method
overriding .

e When method of the superclass and subclass have same method
(with same name and signature), the compiler does not understand
which method to execute. This type of conflict is resolved at run
time and due to this Dynamic Polymorphism is also called Run
time polymorphism .

Example
Let’s create a Method overriding scenario.

> Launch Eclipse IDE and create a new Superclass (I named my class
Animal)

1 package hello_world;

2

3 public class Animal {

4

5e public void eat() {

6 System.out.println("Animals eat veg or non-veg");
7 }

8

9 }

> Create two subclasses (I named one subclass Cow and other subclass
Lion)

Cow.java
1 package hello_world;
2
3 public class Cow extends Animal {
4
55- public void eat() {
| 6 System.out.println("Cows eat grass");
7 }
8
9= public static void main(String[] args) {
10 Animal ¢ = new Cow();
1] c.eat();
12
13 }
14
15 }

Lion.java

1 package hello_world;

2

3 public class Lion extends Animal {
4
5e public void eat() {

6 System.out.println("Lions eat meat");
7 }

8
9e public static void main(String[] args) {
10 Animal 1 = new Lion();

11 l.eat();

12

13 }

14

15 }

Superclass Animal have an eat method and both subclasses Cow and Lion
also have the same method with same name and signature (highlighted in
the screen shot above) .

In Class Cow.java , at line 10, we created object ¢ of type Animal and a
call was made to the Cow constructor .

At line 11, we called the ear method .

After running Cow.java we get an output of

(2 Problems @ Javadoc [&), Declaration B Conscle &3

cterminated:> Cow [Java Application] Checlipseteclipse\plugin

Cows eat grass

In Class Lion.java , at line 10, we created object / of type Animal and a
call was made to the Lion constructor .

At line 11, we called the ear method .

After running Lion.java we get an output of

(2 Problems @ Javadoc [, Declaration B Console i3

<terminated> Lion [Java Application] Checlipseleclipseiplugin:

Lions eat meat

In both cases we see that the ear method of each subclass (Cow and Lion)
overrides the eat method of superclass (4dnimal).

7.3.2: Static Polymorphism

The most important example of this type of Polymorphism is Method
Overloading .

e In Method Overloading , a class can contain multiple methods
with same name with different signature .

e Static Polymorphism is also called Compile time Polymorphism
because in this case the compiler knows which method to execute
based on the method signature and the conflict is resolved at
compile time.

Example

> Launch Eclipse IDE -> create a new class (I named my class
SPExample)

1 package hello_world;

2

3 public class SPExample {

4

5e public void show() {

6 System.out.println("Hi");

7 }

8

9e public void show(String name) {

16 System.out.println("Hello, " + name);
11 }

12

13e public static void main(String[] args) {
14 SPExample s = new SPExample();

15 s.show();
16 s.show("Katy");
17
18 }
19
20 }

Code explanation:

At line 5, a method named show i1s declared.

At line 9, another method named show is declared with a
parameter .

At line 15, show() method is called.

At line 16, the other show() method is called and an argument is
passed into it.

Now let’s run the above piece of code

(2! Problems @ Javadoc i, Declaration [Conscle 3
<terminated> SPExample [Java Application] Checlipseleclipsely

Hi
Hello, Katy

In the above example, we see there are two methods , both have the same
name (show) but have different signature (one without parameter and
other with parameter) .

When we run the above piece of code, it runs perfectly because the
compiler was able to distinguish between the two methods based on their
signature .

TEST

1. Write a program which will print even and odd numbers from 1 to
10.

When a number is divided by 2, if its remainder returns 0, then the number
is even .

When a number is divided by 2, if its remainder does not returns 0, then the
number is odd .

2. Write a program that will loop through an array and will break out
of the loop once a condition is satisfied.

Given: Array car containing 5 elements Toyota, Kia, Ford, Tesla, Truck.

Exit out of the loop once car equal to Tesla.

3. Write a program which will contain two methods with parameters
and these methods will refurn values once called and arguments
are passed into it.

Method 1 should return an integer result after performing arithmetic
multiply operation.

Method 2 should return an integer result after performing arithmetic
division operation.

4. Write a program which will contain one method with a parameter
and this method will return the result once called and an
argument is passed into it.

The method much have a parameter whose data type is string and this
method must return the string value once called and an argument is passed
into it.

Answers

1 package hello_world;

2

3 public class Testl {

4

5e public static void main(String[] args) {

2]

7 for (int i = 1; i <= 10; i++) {

8

9 if (1 % 2 ==8) {

10 System.out.println("Even number:
11 } else {

12 System.out.println("0dd number: " + 1i);
13 }

14 }

15

16 }

17

18 }

+ i);

package hello_world;
public class Test2 {
public static void
String[] car =
for (int i = e;
if (car[i]

System.
break;

}
System.out.

main(String[] args) {

{ "Toyota", "Kia", "Ford", "Tesla", "Truck" };
i ¢ car.length; i++) {

== "Tesla") {

out.println("I wish to own Tesla one day");

println(“Tesla not found, loop no. " + 1i);

package hello_world;

public class Test3 {
int =;

public int multiply(int x, int y) {
z =X *y;

return z;

}

public int division(int x, int y) {
E= % F oy
return z;

}

public static void main(String[] args) {
Test3 t3 = new Test3();
System.out.println(t3.multiply(26, 10));
System.out.println(t3.division(15, 4));

package hello_world;
public class Test4 {
public String name(String name) {
return name,
}
public static void main(String[] args) {

Testd4 t4 = new Test4();
System.out.println("My name is " + t4.name("Basu"));

Wish you all the best and thank you very much for
buying this book.

Always remember, the most important learning is
Self-Learning..

	Chapter 1 : Introduction
	What is Java?
	What is object oriented programming or OOP?
	What is JDK?
	What is JRE?
	What is JVM?
	JVM Architecture

	Chapter 2 : Java JDK and Eclipse IDE Installation
	2.1: JDK download
	2.2: Download and install Eclipse IDE

	Chapter 3 : Class, Object, Variables and Data types
	3.1: What is a Java Class & Object?
	3.2: What is Java Variable?
	3.3: Java Data Types
	3.4: What are access modifiers?
	3.5: What is Java package?
	3.6: Examples
	Example 1
	Example 2

	Chapter 4: Constructors & Methods
	4.1: Constructor
	Example

	4.2: Method
	Example

	4.3: What is public static void main (String[] args)?
	4.4: Mathematical Operators in Java

	Chapter 5: Conditional Statements & Loops
	5.1: Conditional Statements
	Example

	5.2: Loops
	5.2.1: for loop
	Example
	5.2.2: while loop
	Example

	Chapter 6: Array
	Example 1
	Example 2

	Chapter 7: Object Oriented Programming Concepts
	7.1: Encapsulation
	Example

	7.2: Inheritance
	Example

	TEST
	Answers

	5.3: Break statement
	Example

	7.3: Polymorphism
	7.3.1: Dynamic Polymorphism
	Example
	7.3.2: Static Polymorphism
	Example

