

JAVA
PROGRAMMING

FOR
KIDS

AGES 12 - 18

Copyright © 2021 S Basu
All rights reserved.

Disclaimer
:

The information and materials presented here are for educational purposes
only. Every effort has been made to make this book as complete and as
accurate as possible but no warranty or fitness is implied. The information
provided is on an "as is" basis. The ideas and opinions expressed are of
the author's own imagination and the author is not affiliated to any
organization, school or educational discipline and will not be held
accountable or liable for any inadvertent misrepresentation.

Contents
Chapter 1 : Introduction

What is Java?
What is object oriented programming or OOP?
What is JDK?
What is JRE?
What is JVM?

JVM Architecture
Chapter 2 : Java JDK and Eclipse IDE Installation

2.1: JDK download
2.2: Download and install Eclipse IDE

Chapter 3 : Class, Object, Variables and Data types
3.1: What is a Java Class & Object?
3.2: What is Java Variable?
3.3: Java Data Types
3.4: What are access modifiers?
3.5: What is Java package?
3.6: Examples

Example 1
Example 2

Chapter 4: Constructors & Methods
4.1: Constructor

Example
4.2: Method

Example
4.3: What is public static void main (String[] args)?
4.4: Mathematical Operators in Java

Chapter 5: Conditional Statements & Loops
5.1: Conditional Statements

Example
5.2: Loops

5.2.1: for loop
Example
5.2.2: while loop
Example

5.3: Break statement

Example
Chapter 6: Array

Example 1
Example 2

Chapter 7: Object Oriented Programming Concepts
7.1: Encapsulation

Example
7.2: Inheritance

Example
7.3: Polymorphism

7.3.1: Dynamic Polymorphism
Example
7.3.2: Static Polymorphism
Example

TEST
Answers

Chapter 1 : Introduction
Java
is the most important programming language. If you have the full
grasp of Java
basics, then you can easily learn any object oriented
programming language in this world.

What is Java?

Important points to note are:

Java is an object oriented programming (OOP) language
.

Java is platform independent
 meaning that it can run on any
machine containing JVM
.

In order to code and execute a Java code, JDK
is needed.

What is object oriented programming or OOP?

Object oriented programming or OOP is all about working with
classes
, objects
, methods
and variables
(explained in Chapter
3
).

The most important concepts of OOP are: Encapsulation
 ,
Inheritance
and Polymorphism
(explained in Chapter 7
).

What is JDK?

JDK
stands for Java Development Kit
which is needed to code
and execute Java
.

JDK
includes both JVM
and JRE.

What is JRE?

JRE
stands for Java Runtime Environment
.

JRE
 contains classes
 , libraries and software that a Java
program needs in order to run successfully.

JRE
also contains JVM
.

What is JVM?

JVM
stands for Java virtual machine
.

JVM
is responsible for converting the byte code present in .class
file into machine depended code which is understood by that
specific processor or operating system or machine.

JVM Architecture
Java
 files are saved with a .java
 extension. When we compile
 the .java
file, .class
 file is generated and this .class
 file contains byte code. JVM
handles the .class
file and generates the desired output of the Java
program.

What does compilation mean in Java?

Java
compilation is the process of converting a .java
file (which contains
readable text Java code)
into a .class
file (which contains byte code).

What is byte code?

Byte codes are sequence of 0s and 1s.

Let’s look into JVM Architecture
.

JVM
architecture is divided into three main sections:

1. Class Loader
2. JVM Memory
3. Execution Engine

Class Loader
It is responsible for loading the .class
file to the JVM memory
.

JVM Memory
It is further divided into:

Method area –
 It stores all the methods
 information. (methods
explained in chapter 4
).

Heap area –
 It stores all the objects
 and its corresponding
instance variables
(objects and variables explained in chapter 3
).

Stack Area –
It stores all the local variables
and the results of
the methods
(local variables explained in chapter 3
).

PC Register –
 PC register store the address of the currently
executing Java virtual machine
instruction.

Native Method Stacks -
 Native method stacks contains native
codes which are written in another language instead of Java
.

Execution Engine
It is further divided into:

Interpreter –
 It converts the byte code to machine dependent
code which is understood by the machine and desired output is
generated.

JIT Compiler –
 JIT stands for Just in Time
 compiler and its
main task is to increases the performance and efficiency of
Interpreter
.

Now let’s summarize the Java program execution process

Before we start coding, we need to download and install JDK
and an IDE
.

What is Java IDE?

IDE
stands for Integrated Development Environment
. It is a software
application needed to write programs in Java.

There are multiple IDE
present but we will be using Eclipse IDE
to write
our Java code.

Chapter 2 : Java JDK and Eclipse
IDE Installation
2.1: JDK download

Open Google chrome browser (or any browser you like
) and search
for java jdk download
and select the oracle
website
highlighted in
the screen shot below.

Download the latest JDK
version.

Select your operating system. (since I am using windows, so
downloading windows-x64 installer highlighted in the screen shot
below
)

Check on review
box, click download and install.

Click close.

Now check whether the Java PATH
is automatically added to your
Environment Variables
or not.

What is Java PATH?

Java PATH is an environment variable which helps us to locate the JDK
bin
directory or folder which contains all the important files needed to
execute a Java program.

Let’s access the Environment Variables.

➢

Open control panel
-> click on System and Security
.

➢

Click on System

➢

Click on Advanced system settings.

➢

Click on Environment Variables.

➢

Under System variables
, select Path
-> click Edit

➢

Javapath
shows highlighted in the screen shot below.

➢

Click ok and exit.

We have successfully installed JDK
 in our machine. Now let’s download
and install Eclipse IDE.

2.2: Download and install Eclipse IDE

Go to website https://www.eclipse.org/downloads/packages/
 and
download the latest version of Eclipse IDE
.

(since I am using windows operating system, so downloaded Eclipse
IDE for Windows
)

After finish downloading, open the download folder in your
machine.

https://www.eclipse.org/downloads/packages/

The downloaded folder is a ZIP folder and we need to extract it in order to
access Eclipse
application.
So right click on ZIP folder and click extract all.

Browse for your extract location and click on Extract
.

Now open the eclipse
 folder and look for the eclipse
 application
highlighted in the screen shot below.

Click and open the eclipse
application.

Select a workspace
and click on launch

We have now successfully installed Eclipse IDE
.

Let’s begin coding..

Chapter 3 : Class, Object, Variables
and Data types
3.1: What is a Java Class & Object?

Class
Important points to note are:

Java
class
is a blueprint for creating an object
.

Java
class
contains methods
and variables
.

The syntax for creating a Java class
is:

access_modifier
class
class_name
{
……..
}

Object

An object
instance of a class
.

An object
contains the copy of methods
and variables
present inside
its class
.

The syntax for creating a Java object
is:

type

object_name
=
new
class_name
()

The type
denotes the type of object
declared.
The new
keyword is used to create an object
.
The new
 keyword is followed by call to a constructor
 (constructor
explained in chapter 4).

For example: Animal a = new Animal()
,
here a
is an object
of type Animal
(
Class
 name)
 and the new
 keyword is followed by call to Animal
 default
constructor
.

I know it all sounds extremely complicated, let’s try to simplify a little bit
below.

Let us consider a class room containing three students, John
, Ram
and Katy
.
These three students have few things in common and they are as follows:

1. All three are students of a class room.
2. They each have a name.
3. They each have a student_ID.
4. They each have an age.
5. They each have a gender.
6. They each have their home address.

These six things listed above are called attributes
of a student. In Java
world,
we can depict these attributes
in the form of a variable
.

A student performs multiple functions like studying, eating, playing etc. In
Java
world, these functions
can be depicted by methods
.
We have successfully stated the attributes
and functions
of a Student. Now
the big question is where we can store these information?. Well we can store
this information in a class
.
The students John
 , Ram
 and Katy
 have their own individual characteristics
and they all fall under the student category. In Java
world, these three students
are referred as objects
of class
student
and the objects
will contain a copy of
all variables
and methods
declared within its class
.

Let’s summarize the concept:

Student
is a class
.
John
, Ram
and Katy
are objects
which belong to class
Student
.
Name, Gender, Age, Student_ID, Address are variables
of class
Student
.

We will look into another example of Java
class
and object
.

There are multiple animals which belong to the animal kingdom. There are
dogs
, tigers
, monkeys
, lion
etc. All animals have few things in common like
they all fall under the animal category, they all have a name, weight, age and
they also perform some common functions like eating, playing and many
more.

In Java
world, we can write all the above information in a class
Animal
and
the objects
of class
Animal
will be dog
, tiger
, monkey
.

In other words we can say an object
 is a small miniscule entity of the vast
class
which has its own properties and characteristic.

3.2: What is Java Variable?

Important points to note are:

Java
variables
act as a container to hold data.

The variables
are declared with a Data type
.
Example: int
age

Here age
is a variable
name whose data type
 is int
or integer
meaning that
the variable
age
can hold only numeric whole numbers.

Java
variables
are of three types:

1. Local variable – These
 variables are declared within
 methods
(methods discussed in chapter 4)
and the
variables get destroyed
soon after exiting the
method
.

2. Instance variable – These
variables are declared within the
class
.

3. Static variables – The values of these
 variables remains
constant or
static and it also does not require any
object
to access
it.

3.3: Java Data Types

Java data types are divided into two categories:

1. Primitive Data Type –
It contains such as boolean, char, int, short,
byte, long, float, and double.

2. Non-Primitive Data Type
: It contains String, Array, etc.

Data type Description

int This data type stores integer values
like 1,2,3,4 ….50..80

float This data type stores fractional
numbers like 123.50

char This data type stores a single
character value like ‘A
’ or ‘B’
or ‘C’

boolean
This data type returns TRUE or

FALSE of any given expression or
condition.

String String is a Java class
which is used to
stores group of characters. Example:

“John
” or “Hello students
” etc

In the above Student
class
example of section 3.1:

Variable
Name
will be of data types String.

Variable
Gender
 is usually denoted by a single character M (for
male)
or F (for female)
so its data types will be char.

Variable
Age
will be of data type int.

Variable
Student_ID
 may contain numbers and character values
together, so let’s assign a data type of String
to it.

Variable
Address
will be of data types String.

3.4: What are access modifiers?

Access modifiers denote the accessibility of a class
or a method
. It is broadly
divided into 4 types:

1: Public access modifiers –
This means that the class
or
method
is accessible
from everywhere.

2: Private access modifiers –
 This means that the class
 or
 method
 is
accessible only from within.

3: Default access modifiers –
 This means that the class
 or
 method
 is
accessible only from within its package
.

4: Protected access modifiers –
 This means that the class
 or
 method
 is
accessible from within its package
 or any package
 other than its own
package
through inheritance
only (inheritance discussed in chapter 7).

3.5: What is Java package?

A Java
package
contain group of Java
classes
.

Java packages
are mainly done to avoid name conflicts.

If a package
contains two Java
class
files of the same name, it will lead to
name conflict and error in the Java
project may occur in future. In order to
prevent that from happening, separate packages
 should be created for
storing the class
file which has the same name.

Now let’s code..

3.6: Examples

Example 1
Launch Eclipse IDE
and create a new Java project
.

Click on File
-> New
-> Java Project
.

Give the Project name
(I named
hello_world
) and click on Finish
.

On Create module-info.java
window, for now I will be clicking on
Don’t Create
.

Our hello_world
Java project
is created.

Right click on the src
 folder -> Click New
 -> Package
 (we are
creating a new
package)
.

What is the default src folder of Eclipse IDE?

Default src folder is the source folder which contains the source code or the
main code of our project.

Click Finish

Right click on the hello_world
package
-> click New
 -> Click Class
(we are creating a new Java
class
)

Give the Class
name (I gave
Hello
)
starting with a capital letter -> check on
public static void main(String[] args)
box
-> click Finish
.

In Hello.java
 , write one line of code highlighted in the screen shot
below and execute the program by clicking on the run
button.

Code explanation:

System.out.print
is used to display or print output.

System.put.println
 is same as System.out.print
but the println
 displays
output in separate lines.

At line 5, you will notice a very important line of code that is public
static void main(String[] args).
 It is the
Java
 main
 method
 and it
acts as an entry point to our
 Java
 Program. Any Java program will
only start execution process after it encounters this very important line
of code.
(We will discuss more about this line of code in Chapter 4).

Example 2
Let’s create another Java
class
.

Right click on hello_world
 package
 -> New
 -> Class
 (I named my
class
file
students
)

In students.java
, write the following lines of code.

Code explanation:

At line 5, we declared an instance variable
(explained in section 3.2)
name
whose data type (explained in section 3.3)
is String
.

At line 8, the very important line of code public static void
main(String[] args)
is written.

Please Note:
 Always remember Java objects must be declared only after
typing this very important line of code.

At line 9, 10, 11 different objects
of class
Students
are created.

With the help of dot (.) operator
, we access the variable
name
from
class
Students.

Please Note:
To access any variable
or method
of a class
from an object
,
dot operator
is used.

At line 13, 14, 15, we pass values or data into the name
variable
of
each object
.

At line 17, 18, 19, we print out the values.

Now let’s run the above piece of code

Chapter 4: Constructors & Methods
In previous chapter we learnt about the basic idea of a method
. In this chapter
we will create a Java
program containing constructors
and methods
.

4.1: Constructor

We learnt about Java
object
syntax in chapter 3, section 3.1 and we learnt that
the new
 keyword is followed by call to a constructor
 so what is Java
constructor?
.

Java
constructor
 is a special Java
method
 that is used to initialize
Java
objects
.

Java
constructor’
s name must match with the Java
class
name.

Java
constructor
does not have a return type
(return type discussed
in section 4.2).

Java
constructor
 is always called during object
 creation. If a class
does not contain any constructor
, then Java
compiler
automatically
created a default constructor
and executes the program.

Java
constructor
is of two types:

1. Default constructor
2. Parameterized constructor

Default constructor
Default constructor does not contain any parameter
.

Parameterized constructor
Parameterized constructor contains parameters
.

What is Parameter?

Parameter is a variable
 which is passed to a method
 or constructor
 . A
method
or constructor
can have one parameter
or multiple parameters
.

Example

➢

Launch Eclipse IDE
-> create a new class
(I named my
class Multiply
)

Code explanation:

At line 4, instance variable
(instance variable discussed in chapter 3,
section 3.2
) value1
and value 2
are declared.

At line 6, we created our default constructor
.

At line 10, we created our parameterized constructor
 and it takes
two parameters
x
and y
.

At line 12, we passed x
to value1
meaning that when we will assign a
value to variable
x
 , that value will in turn get assigned to variable
value1
.

At line 13, we passed y
to value2
meaning that when we will assign a
value to variable
y
 , that value will in turn get assigned to variable
value2
.

At line 16, method
multiply
 is declared and this method
will return
the multiplication result.

At line 21, Java main
method
 is declared (we have discussed about
this very important line of code in chapter 3 and we will discuss more
about this method as we proceed further).

At line 22, object
 m
 is created and values are passed to Multiply
constructor (parameterized constructor created in line 10. Value 10 is
assigned to
instance variable value1
and other value 10 is assigned
to
value2)

At line 23, method
multiply
is called.

Now let’s run the above piece of code

4.2: Method
A Java
method
is a block of code performing some task.

For example: Let us consider a Math
class
 , Math
contains numbers and
with those numbers we can perform multiple functions
 like addition,
subtraction, multiplication, division etc. In Java
 , we can write these
functions
in a method
.

The signature
of a Java
method
is:

access_modifier
return_type
method_name
{
……………
}

(access_modifier
discussed in section 3.4 of chapter 3
)

What is return type in Java?

Return type is the data type
of the value returned by the method
.

Example: Let us consider the method signature
written below:

public int
addition
() {

}

In the above method signature
 , the method
 ’s name is addition
 and its
return type is int
. This means that the addition
method
will return a value
of data type int
.

In order to return the value of a method
return keyword
is used.

Let us consider another method signature
written below:

public void
show
() {

}

In the above method signat
ure, the method
’s name is show
and its return
type is void
. This means that the show
method
will return no value.

Example

Launch Eclipse IDE
 -> create a new Class
 within the hello_world
package
(created in chapter 3
)

(I named my
Class
Math
)

In Math.java
write the following lines of code.

Code explanation:

At Line 3, Math
class
is declared and this class
contains two methods
addition
and subtraction
.

At line 5, addition
method
is declared.

Let’s look into its signature.

At line 6, we declared a local variable
z
 (local variable discussed
in chapter 3, section 3.2).

At line 7, we perform the arithmetic operation.

At line 8, we return the value of z
with the help of return keyword
.

Line 11 – 14, contains method
 subtraction
 and it follows the same
process of method
addition
.

Line 17 contains the main line of code which will start the execution
process and will act as an entry point to Math.java
.

At line 19, object
m
of class
Math
is created. This object
will contain
a copy of all methods
and variables
of class
Math
. In order to access
those information dot (.) operator
is used.

At line 20 and 21, the methods
 of class
 Math
 are accessed and
arguments
are passed into those methods
(In
addition method
, value
10 is assigned to
variable
x
and other value 10 is assigned to
variable
y
. In
subtraction method,
the value 10 is assigned to
variable x
and
other value 5 is assigned to
 variable y)
 . Then the results of those
methods
are printed by System.out.println
.

What is Argument?

Arguments are data values which are passed to the method
parameters
.

Now let’s run the above piece of code

4.3: What is public static void main (String[] args)?

We have learnt in chapter 3 as well as in this chapter that public static void
main (String[] args)
 is the most important line of code in any Java
program. This line of code acts as an entry point or starting point of any Java
program.

Please Note:
JVM
accesses the Java
main
method
. (JVM discussed in
chapter 1)

4.4: Mathematical Operators in Java

Arithmetic Operator Description
+ Addition
- Subtraction
* Multiplication
/ Division

% Returns the Division remainder

++

Increments a variable
by 1.
Example x
= x
+ 1. If value of x
is 5,
then the new value of x
will be 5 + 1

= 6.

--

Decrements a variable
by 1.
Example x
= x
– 1. If value of x
is 4,
then the new value of x
will be 4 – 1

= 3.

Chapter 5: Conditional Statements
& Loops
5.1: Conditional Statements

Java contains multiple conditional statements and they are:

1. if
2. else
3. else if

The syntax of if
and else
is:

if (
condition
) {
…………….
code
………
}
else {
…………..
code
………………
}

The syntax of if
, else if
and else
is:

if (
condition
) {
……..
code
……………….
}
else if (
condition
) {
………..
code
………………..
}
else {
………………..
code
……………
}

These conditional statements check where a certain condition returns Boolean
value TRUE
 or FALSE
 . If the condition returns TRUE
 , a block of code
executes, else another block of code executes.

Execution flow of
if
and
else

Execution flow of
if
,
else if
and
else

Logical operations available in Java

Operator Description

x > y Checks whether the value of x
is
greater than the value of y

x < y Checks whether the value of x
is less
than the value of y

x == y Checks whether value of x
is equal to
the value of y

x != y Checks whether the value of x
is
NOT equal to the value of y

x >= y
Checks whether the value of x
is

greater than and equal to the value of
y

x <= y Checks whether the value of x
is less
than and equal to the value of y

Let’s code..

Example

Launch Eclipse IDE
and create a new Java
Class
 (I named my class
ConditionalStatements
)
and write the following lines of code shown
in the screen shot below.

Code explanation:

At line 3, Class
ConditionalStatements
is declared.

At line 5, public static void main (String[] args)
is written (this line
of code was discussed in chapter 3 and chapter 4
).

At lines 7 and 8, instance variables
 (discussed in section 3.2 of
chapter 3
) x
and y
are declared and values 5 and 10 are assigned to it.

At line 10, if condition
is declared. It checks whether the value of x
is
greater than the value of y
 . If the condition is satisfied or return
Boolean value TRUE
, line 11 executes
.

At line 13, else if condition
is declared. It checks whether the value of
x
is equal to the value of y
. If both values are equal, line 14 executes.

At line 16, else
 condition is declared and this block of code runs if
both if
and else if
condition is not satisfied.

In this example, the value of x is 5 and the value of y is 10, so the value of x is
not greater than the value of y and hence the condition will return
FALSE
and
line 11 will not execute. The value of x is obviously not equal to the value of y,
so the condition will return
FALSE
and the line 14 will not execute.
Value of x was not greater than y (stated in
if
condition) and value of x was not
equal to the value of y (stated in
else if
condition), so this means that x is less
than y and
else
block of code executes.

Now let’s run the above piece of code.

5.2: Loops

There are two types of loop:

1. for loop
2. while loop

These loops are used to loop through a block of code to test whether a
certain condition is satisfied or not.

for
loop
works best with Arrays
(we will learn about
Array
basics in
Chapter 6
).

5.2.1:
for loop

The syntax is:

for (
initialization
,
condition
,
increment
) {
………
code
………………
}

The initialization
part initialize a variable
and it executes only
once
in the for loop
lifecycle.

The condition
part contains a logical operation.

The increment
 part increments the variable
 and it executes
every time
after the block of code executes.

Execution flow of a
for
loop

Example

Launch Eclipse IDE
and create a new Class
(I named my
class Loops
).

Write the following lines of code in Loops.java
.

Code explanation:

At line 3, class
Loops
is declared.

At line 5, the main method
is written (this line of code is discussed in
chapter 3 and 4)
.

At line 7, the for loop
is stated.

In initialization part,
the variable i
 is declared and a value of 0 is
assigned to it.

In condition part
, the condition of i <= 5
is set.

In increment part
, we increment the value of i
by 1. The value of i
will increment by 1 every time the condition is satisfied or returns
TRUE
and the block of code executes.

At line 8, the value of i
is printed.

Execution process of the above piece of code:

i
= 0 -> the condition is checked (
 i
 is indeed less than 5, so the
condition returns TRUE
) -> line 8 runs -> i
is incremented 1.

Present value of i
is 1.

i
= 1 -> the condition is checked (
 i
 is indeed less than 5, so the
condition returns TRUE
) -> lines 8 runs -> i
is incremented 1.

Present value of i
is 2.

i
= 2 -> the condition is checked (
 i
 is indeed less than 5, so the
condition returns TRUE
) -> lines 8 runs -> i
is incremented 1.

Present value of i
is 3.

i
= 3 -> the condition is checked (
 i
 is indeed less than 5, so the
condition returns TRUE
) -> lines 8 runs -> i
is incremented 1.

Present value of i
is 4.

i
= 4 -> the condition is checked (
 i
 is indeed less than 5, so the
condition returns TRUE
) -> lines 8 runs -> i
is incremented 1.

Present value of i
is 5.

i
= 5 -> the condition is checked (
 i
 is indeed equal to 5, so the
condition returns TRUE
) -> lines 8 runs -> i
is incremented 1.

Present value of i
is 6.

i
= 6 -> the condition is checked (i
is NOT less than or equal to 5,
so the condition is FALSE) -> EXIT out of the loop.

Now let’s run the above piece of code:

5.2.2:
while loop
while loop
 keeps on executing a block of code as long as the condition is
TRUE
.

The syntax is:

while (
condition
) {
……….
code
…………..
}

Example

Code explanation:

At line 7, instance variable
(instance variable discussed in chapter 3,
section 3.2)
i
is declared and a value 0 is assigned to it.

At line 9, while loop
is declared with a condition
. This loop will go
on till the value of i
is less than 5.

Please note:
It is very important to increment the value of i
as we did on line
11 of the above piece of code. If we do not increment, the while loop
will
never stop.

5.3: Break statement

Break
 statements are used to break out of a loop if certain condition is
satisfied.

Example
➢

In Eclipse IDE
, create a new Class
(I named my
class BreakExample
)

Execution flow of the above piece of code:

Chapter 6: Array
An Array is a collection of elements all having the same data type
.

The syntax for Array declaration is:

data_type[]
array_name

or

data_type[]
array_name = {
element1
,
element2
…….}

or

data_type[]
array_name =
new
data_type[
array size
]

Let us consider the Fruits
 category. Fruits
 can be divided into apple
 ,
orange
, banana
, strawberry
etc.

In Java
, we can store all the fruits items or elements (shown in the screen
shot above)
into a single variable
using array
.

For example:

String[] fruits = { “apple”, “orange”, “banana” }

fruits
is an array
which holds or stores elements of data type
String
and
fruits
stores elements apple
, orange
and banana
.

How to access any value from an Array?

An array
element can only be accessed from its index value
.

The syntax for accessing an element from an array
is:

array_name
[
index_value
]

In the above fruits
example, apple
is present at index value
0. orange
is
present at index value
1 and banana
is present at index value
2.

In order to access apple
from the fruits
array
, we need to write
fruits[0].
In order to access orange
from the fruits
array
, we need to write
fruits[1].

In order to access banana
from the fruits
array
, we need to
write fruits[2].

Please note:
The index value always starts with 0.

Example 1

1. Without using for loop

➢

 Launch Eclipse IDE
 -> create a new Class
 (I named my class
ArrayFruits
)

Now let’s run the above piece of code:

2. Using for loop

(
for loop
discussed in chapter 5)

Code explanation:

In line 9, you will notice the condition
i < fruits.length
;

What is length?

length is a special variable
which returns the length of an array
. In this
example, the length of array
 fruits
 is 3 because it contains 3 elements
apple
, orange
and banana
.

This condition
 states to continue the for loop
 till i
 is less than the
length
of the array
 . Since the length
of the array
 is 3, the for loop
will loop 3 times.

Execution flow of the above piece of code:

Example 2

➢

Let’s create another class
(I named my class Car
)

Code explanation:

At line 5, we declared an array
show
whose data type
is string
.
We also set its size
meaning that this array
will only hold 2
elements.

At line 7, we declared a method
car_info
with two parameters
make
and model
.

(
This method will return
an array
of data type string
).

At line 9, we store make
at array
position 0.

At line 10, we store model
at array
position 1.

At line 11, we return
the array
show
.

At line 18, we access the car_info
method
and pass values into it.

car_info
returns
an array
of data type string
and that result gets stored
in another array
x
.

From line 20 to 21, we print out the elements from array
x
.

Let’s run the above piece of code:

Please note:
In order to return
multiple values from a method
, we can
use array
as we did in above example.

Chapter 7: Object Oriented
Programming Concepts
The most important Object Oriented Programming or OOP concepts are:-

1. Encapsulation
2. Inheritance
3. Polymorphism

7.1: Encapsulation

Encapsulation is the mechanism in which all the Java methods
and
variable
are wrapped up into a single unit (
Class
)
.

Encapsulation helps to protect the data present inside the unit and
prevents any malicious activity.

In Encapsulation, the variables
 of a class
 is declared private
(private access modifiers explained in chapter 3, section 3.4)
.

In order to access the private variable
from outside the class
, get
and
set methods
are used.
set method
 is used to set a value and get method
 is used to get the
value.

Example
➢

Launch Eclipse IDE
-> create a new Class
(I named my
class Encap

).

In Encap class
, I declared two variables
username
and password
.
Since both username
 and password
 carries very important and sensitive
data (sensitive data are those data which must be hidden and protected at
any cost)
,
so we declared its access modifier
as private
meaning that no
class
outside Encap
class
can access these variables
 . In order to access
these private variables
, we need get
and set
methods
.

➢

 To generate get
 and set methods
 of variables
 username
 and
password
 , click on the yellow bulb like icon beside username
 and
password
and select Create getter and setter for ‘username’
and Create
getter and setter for ‘password’
respectively.

What is
this keyword
?

this keyword
refers to the current object
.

In the above example, Class
Encap
is public
meaning that any other class
can access Class
 Encap
 but its variables
 are private
 meaning no other
class
can access these variables
except for Class
Encap
. The get
and set
methods
are public
meaning that any other class
can access these methods
.

➢

Let’s create another class
(I named my
class Encap2
)
and access the
get
and set
method
declared in class
Encap
.

Code explanation:

Since Class
Encap
was public
, Class
Encap2
can access it easily.

In line 6, an object
of class
Encap
is created and its set
and get methods
are accessed.

First we pass a value to
variable
username
using its
set method
at line 8
and then we get and print out the value using its
get method
at line 9.
Then we pass a value to
variable password
using its
set method
at line11
and then we get and print out the value using its
get method
at line 12.

Let’s run the above piece of code:

7.2: Inheritance

Important points to note are:

Inheritance is a mechanism in which a subclass
 or child class
inherits all the properties from superclass
or parent class
.

The main usage of Inheritance is code reusability.

The subclass
or child class
inherits properties from its parent class
using extends keyword
.

class Parent {
………………..code…………
}
class Child
extends
Parent {
……………….code………………
}

A subclass
 can contain its own properties as well as its parent
class
properties.

Example: Let us consider a school district XYZ
 contains three schools,
elementary school
, middle school
and high school
and all the three schools
are built on the same street and on the same location. The common attribute
between these schools are:

1. They all are schools or educational institution.
2. They all are built on the same street but have different building

names and numbers.
3. They all fall under the same school district.

While coding, instead of writing these common information for each school
again and again, we can write them once in a single place (in a
superclass
or
parent class
)
and call them whenever any other class
needs them.

Example
➢

 Launch Eclipse IDE
 , create a new class
 (I named my
 class

SchoolSuperClass
)
and this class
will act as a superclass
.

➢

Create three more classes
, one for elementary school
 (I named my
class
 ElementaryChild
)
 , one for middle school
 (I named my
 class
MiddleChild
) and one for high school
(I named my
class
HighChild
).
These three classes
 will act as a child class
 of superclass
SchoolSuperClass.java
.

➢

 In superclass
SchoolSuperClass.java,
write the following lines of
code:

In this class
 , we declared all the variables
 and methods
 which are
common to all three schools.

Open ElementaryChild.java,
and write the following lines of code

Code explanation:

At line 3, with the help of extends keyword
 ,
 all properties of
superclass
 SchoolSuperClass
 are incorporated into child class
ElementaryChild.

At line 7, object
e
of ElementaryChild
class
is created.

At line 9 and line 10, the variables
school_Id
and building_num
are accessed from superclass
and values are passed into it.

At line 12 and 13, the values of the variables
are printed.

At line 14, the street_address()
 method
 present in superclass
 is
called.

Now let’s run the above piece of code:

Open the second class
 file MiddleChild.java
 and write the
following lines of code:

The above piece of code is very similar to
ElementaryChild.java,
only
data
is different.

Let’s run the above piece of code:

We followed the same process above for HighChild.java.

7.3: Polymorphism

Polymorphism is a mechanism in which a method
can be executed in many
forms based on the object
that is acting upon it.

Polymorphism is of 2 types:

1. Dynamic Polymorphism or Run Time polymorphism
2. Static Polymorphism or Compile time polymorphism

7.3.1:
Dynamic Polymorphism

The most important example of this type of Polymorphism is Method
overriding
.

When superclass
and subclass
have method
with same name and
signature
 , the method
 of the subclass
 tends to overrides the
method
 of the superclass
 . This mechanism is called Method
overriding
.

When method
of the superclass
and subclass
have same method
(with same name and signature),
the compiler
does not understand
which method
 to execute. This type of conflict is resolved at run
time
and due to this Dynamic Polymorphism
 is also called Run
time polymorphism
.

Example

Let’s create a Method overriding
scenario.

➢

Launch Eclipse IDE
and create a new Superclass
(I named my
class
Animal
)

➢

Create two subclasses
(I named one
subclass
Cow
and other
subclass
Lion
)

Cow.java

Lion.java

Superclass
Animal
have an eat
method
and both subclasses
Cow
and Lion
also have the same method
with same name and signature
(highlighted in
the screen shot above)
.

In Class
Cow.java
, at line 10, we created object
c
of type
Animal
and a
call was made to the Cow
constructor
.
At line 11, we called the eat
method
.

After running Cow.java
we get an output of

In Class
Lion.java
, at line 10, we created object
l
of type
Animal
and a
call was made to the Lion
constructor
.

At line 11, we called the eat
method
.

After running Lion.java
we get an output of

In both cases we see that the eat
method
of each subclass
(Cow and Lion)
overrides the eat
method
of superclass
(Animal).

7.3.2:
Static Polymorphism

The most important example of this type of Polymorphism is Method
Overloading
.

In Method Overloading
 , a class
 can contain multiple methods
with same name with different signature
.

Static Polymorphism
is also called Compile time Polymorphism
because in this case the compiler
knows which method
to execute
based on the method
 signature and the conflict is resolved at
compile time.

Example

➢

 Launch Eclipse IDE
 -> create a new class
 (I named my
 class
SPExample
)

Code explanation:

At line 5, a method
named show
is declared.

At line 9, another method
 named show
 is declared with a
parameter
.

At line 15, show()
method
is called.

At line 16, the other show()
method
is called and an argument
 is
passed into it.

Now let’s run the above piece of code

In the above example, we see there are two methods
, both have the same
name (show
) but have different signature
(one without parameter and
other with parameter)
.
When we run the above piece of code, it runs perfectly because the
compiler
was able to distinguish between the two methods
based on their
signature
.

TEST
1. Write a program which will print even
and odd
numbers from 1 to

10.

When a number is divided by 2, if its remainder returns 0, then the number
is
even
.
When a number is divided by 2, if its remainder does not returns 0, then the
number is
odd
.

2. Write a program that will loop through an array
and will break
out
of the loop once a condition is satisfied.

Given:
Array car
containing 5 elements Toyota, Kia, Ford, Tesla, Truck.
Exit out of the loop once
car
equal to
Tesla.

3. Write a program which will contain two methods
with parameters
and these methods
will return
values once called and arguments
are passed into it.

Method 1 should return an
 integer
 result after performing arithmetic
multiply
operation.
Method 2 should return an
 integer
 result after performing arithmetic
division
operation.

4. Write a program which will contain one method
with a parameter
and this method
 will return
 the result once called and an
argument
is passed into it.

The method much have a
 parameter
 whose data type is
 string
 and this
method must return the
string
value once called and an
argument
is passed
into it.

Answers

1.

2.

3.

4.

Wish you all the best and thank you very much for
buying this book.

Always remember, the most important learning is
Self-Learning..

	Chapter 1 : Introduction
	What is Java?
	What is object oriented programming or OOP?
	What is JDK?
	What is JRE?
	What is JVM?
	JVM Architecture

	Chapter 2 : Java JDK and Eclipse IDE Installation
	2.1: JDK download
	2.2: Download and install Eclipse IDE

	Chapter 3 : Class, Object, Variables and Data types
	3.1: What is a Java Class & Object?
	3.2: What is Java Variable?
	3.3: Java Data Types
	3.4: What are access modifiers?
	3.5: What is Java package?
	3.6: Examples
	Example 1
	Example 2

	Chapter 4: Constructors & Methods
	4.1: Constructor
	Example

	4.2: Method
	Example

	4.3: What is public static void main (String[] args)?
	4.4: Mathematical Operators in Java

	Chapter 5: Conditional Statements & Loops
	5.1: Conditional Statements
	Example

	5.2: Loops
	5.2.1: for loop
	Example
	5.2.2: while loop
	Example

	Chapter 6: Array
	Example 1
	Example 2

	Chapter 7: Object Oriented Programming Concepts
	7.1: Encapsulation
	Example

	7.2: Inheritance
	Example

	TEST
	Answers

	5.3: Break statement
	Example

	7.3: Polymorphism
	7.3.1: Dynamic Polymorphism
	Example
	7.3.2: Static Polymorphism
	Example

